The ADAM10 prodomain is a specific inhibitor of ADAM10 proteolytic activity and inhibits cellular shedding events.
نویسندگان
چکیده
ADAM10 is a disintegrin metalloproteinase that processes amyloid precursor protein and ErbB ligands and is involved in the shedding of many type I and type II single membrane-spanning proteins. Like tumor necrosis factor-alpha-converting enzyme (TACE or ADAM17), ADAM10 is expressed as a zymogen, and removal of the prodomain results in its activation. Here we report that the recombinant mouse ADAM10 prodomain, purified from Escherichia coli, is a potent competitive inhibitor of the human ADAM10 catalytic/disintegrin domain, with a K(i) of 48 nM. Moreover, the mouse ADAM10 prodomain is a selective inhibitor as it only weakly inhibits other ADAM family proteinases in the micromolar range and does not inhibit members of the matrix metalloproteinase family under similar conditions. Mouse prodomains of TACE and ADAM8 do not inhibit their respective enzymes, indicating that ADAM10 inhibition by its prodomain is unique. In cell-based assays we show that the ADAM10 prodomain inhibits betacellulin shedding, demonstrating that it could be of potential use as a therapeutic agent to treat cancer.
منابع مشابه
ADAM9 inhibition increases membrane activity of ADAM10 and controls α-secretase processing of amyloid precursor protein.
Prodomains of A disintegrin and metalloproteinase (ADAM) metallopeptidases can act as highly specific intra- and intermolecular inhibitors of ADAM catalytic activity. The mouse ADAM9 prodomain (proA9; amino acids 24-204), expressed and characterized from Escherichia coli, is a competitive inhibitor of human ADAM9 catalytic/disintegrin domain with an overall inhibition constant of 280 ± 34 nM an...
متن کاملInsulin stimulates the cleavage and release of the extracellular domain of Klotho by ADAM10 and ADAM17.
Cleavage and release (shedding) of membrane proteins is a critical regulatory step in many normal and pathological processes. Evidence suggests that the antiaging transmembrane protein Klotho (KL) is shed from the cell surface by proteolytic cleavage. In this study, we attempted to identify the enzymes responsible for the shedding of KL by treating KL-transfected COS-7 cells with a panel of pro...
متن کاملSerum Level of Soluble Receptor for Advanced Glycation End Products Is Associated with A Disintegrin And Metalloproteinase 10 in Type 1 Diabetes
BACKGROUND The receptor for advanced glycation end products (RAGE) is involved in the pathogenesis of diabetic complications, and soluble forms of the receptor (sRAGE) can counteract the detrimental action of the full-length receptor by acting as decoy. Soluble RAGE is produced by alternative splicing [endogenous secretory RAGE (esRAGE)] and/or by proteolytic cleavage of the membrane-bound rece...
متن کاملThe low affinity IgE receptor (CD23) is cleaved by the metalloproteinase ADAM10.
The low affinity IgE receptor, FcepsilonRII (CD23), is both a positive and negative regulator of IgE synthesis. The proteinase activity that converts the membrane-bound form of CD23 into a soluble species (sCD23) is an important regulator of the function of CD23 and may be an important therapeutic target for the control of allergy and inflammation. We have characterized the catalytic activity o...
متن کاملADAM10 Missense Mutations Potentiate β-Amyloid Accumulation by Impairing Prodomain Chaperone Function
The generation of Aβ, the main component of senile plaques in Alzheimer's disease (AD), is precluded by α-secretase cleavage within the Aβ domain of the amyloid precursor protein (APP). We identified two rare mutations (Q170H and R181G) in the prodomain of the metalloprotease, ADAM10, that cosegregate with late-onset AD (LOAD). Here, we addressed the pathogenicity of these mutations in transgen...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 282 49 شماره
صفحات -
تاریخ انتشار 2007